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Random graphs, phase transition

The structure of critical random graphs

The minimum spanning tree

More optimization problems



Erdős–Rényi random graphs

Definition. Random graph G (n, p)

graph on {1, 2, . . . , n}
every edge is present with probability p

Phase transition: G (n, c/n)

c < 1:

c = 1:

c > 1:

|C n
1 | = O(log n)

|C n
1 |, |C n

2 |, . . . , |C n
k | ≈ n2/3

|C n
1 | = Ω(n), |C n

2 | = O(log n)

C n
i the connected components in decreasing order of size



G (10000, 0.5
10000 )



G (10000, 1.0
10000 )



G (10000, 1.5
10000 )



The phase transition

Theorem. (Aldous 1997)

(n−2/3|C n
i |, s(C n

i ))i≥1 → (|γi |, s(γi ))i≥1

inside the critical window pn = 1 + λn−1/3
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The phase transition

Theorem. (Aldous 1997)

(n−2/3|C n
i |, s(C n

i ))i≥1 → (|γi |, s(γi ))i≥1

W λ(t) := tλ− t2/2 + W (t)

Bλ(t) := W λ(t)− inf0≤s≤t W
λ(s)

W standard BM

Poisson point process rate one in [0,∞)× [0,∞)

inside the critical window pn = 1 + λn−1/3



Phase transitions and fractals



Comparing metric spaces

Gromov-Hausdorff topology.

(X1, d1)

(X2, d2)

(Z , δ)

φ1 φ2



Comparing measured metric spaces

Gromov-Hausdorff-Prokhorov topology.

(X1, d1, µ1)
(X2, d2, µ2)

(Z , δ)

φ1
φ2



Scaling critical random graphs

Theorem.

(C n
i )i≥1 → (Ci )i≥1

in distribution for the “GHP distance”

critical window G (n, p), for pn = 1 + λn−1/3

d4
GHP(A,B) =

∑
i≥1

dGHP(Ai ,Bi )
4

1/4

(ABG2012)

C n
i the ith largest c.c.

distances rescaled by n−1/3

mass n−2/3 on each vertex



A (limit) random connected component



The tree encoded by a Brownian excursion (CRT)

excursion f tree Tf

df (x , y) = f (x) + f (y)− 2 inf{f (t) : x ∧ y ≤ t ≤ x ∨ y}

x ∼f y if df (x , y) = 0 ([0, 1]/∼f , df ) is a real tree

0 1

Definition: (Tf , df )



Scaling limit of random trees

Theorem. (Aldous)

Tn a uniformly random tree on {1, 2, . . . , n}

n−1/2Tn → T2e



Scaling limit of random trees

Theorem. (Aldous)

Tn a uniformly random tree on {1, 2, . . . , n}

n−1/2Tn → T2e

T2e : Continuum random tree



A limit connected component I

Tilted excursions

E[f (ẽ)] =
E[f (e) exp(

∫ 1

0
e(s)ds)]

E[exp(
∫ 1

0
e(s)ds)]



A limit connected component I

Tilted excursions

E[f (ẽ)] =
E[f (e) exp(

∫ 1

0
e(s)ds)]

E[exp(
∫ 1

0
e(s)ds)]

Poisson process rate one under ẽ

{•, •, •}For each point identify two point of T2ẽ



A limit connected component II

1. Sample a connected 3 regular multigraph

with 2(s − 1) vertices and 3(s − 1) edges

2. respective masses of the bits:

Sample a vector (X1, . . . ,X3(s−1)) ∼ Dirichlet( 1
2 , . . . ,

1
2 )

3. sample 3(s − 1) independent CRT

with 2 distinguished points each

s = 3
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The minimum spanning tree

Definition.
G = (V ,E ) a connected graph

MST = lightest connected subgraph of G

we ≥ 0, e ∈ E weights

Kruskal’s algorithm.

1. sort the edges by increasing weight, ei , 1 ≤ i ≤ |E |

2. Initially set T0 = (V ,∅)

3. Set Ti+1 = Ti ∪ {ei} iff it does not create a cycle



Kruskal – Example
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Random Model

graph: complete graph Kn

iid uniform weights

A little history.

Frieze (’85): total weight converges to ζ(3)

Aldous: degree of the node 1

”Mean-field” model

Janson (’95): CLT



Random Model

graph: complete graph Kn

iid uniform weights

A little history.

Frieze (’85): total weight converges to ζ(3)

Aldous: degree of the node 1

But... all these informations are local

What is the global metric structure?

”Mean-field” model

Janson (’95): CLT



The continuum spanning tree

The rescaled minimum spanning tree

Tn
d−−−→

GHP
M

Tn the minimum spanning tree of Kn

Theorem

There exists a random compact metric space M

n−1/3dn, for dn the graph distance
µn mass 1/n on each vertex of {1, 2, . . . , n}

such that:

(ABGM 2013)



A few properties of M

Proposition.
1. M is geodesic

2. M has no loop

3. M has maximum degree 3

4. for µ-almost every x , deg(x) = 1



A few properties of M

Proposition.
1. M is geodesic

2. M has no loop

3. M has maximum degree 3

4. for µ-almost every x , deg(x) = 1

Proposition.
M is not Aldous’ Continuum Random Tree



What does it look like?



box-counting dimension

(X , d) a compact metric space

N(X , r) = min number of balls of radius r to cover X

dim(X ) = lim inf
r→0

logN(X , r)

log(1/r)

Example:

N([0, 1], r) ≈ 1/r

dim(X ) = lim sup
r→0

logN(X , r)

log(1/r)

dim(X ) is the common value, if they are equal

dim([0, 1]) = 1



Dimensions of continuum random trees

Theorem.

dim(M ) = 3 with probability one

while

Theorem.
dim(CRT ) = 2 with probability one



Forward-Backward approach

Track the metric structure as the edges are added.

Track the metric structure as the edges are removed

1. Build G (n, p): Add all edges until some weight p

2. Remove the edges that should not have been put

Two main tools.

Strategy.

In Kruskal’s algorithm



Forward-Backward approach

Track the metric structure as the edges are added.

Track the metric structure as the edges are removed

1. Build G (n, p): Add all edges until some weight p

2. Remove the edges that should not have been put

Two main tools.

Strategy.

In Kruskal’s algorithm

2’. Conditional on G (n, p) = G ,

construct a tree distributed as MST(G)



When is the metric structure built?

Evolution of distances:

for all p < (1− ε)/n

T (n, p) portion of the MST that is in G (n, p)

dGHP(T (n, p); 0) = O(log n)

for all p > (1 + ε)/n

dGHP(T (n, p); ((T (n, 1), 0)) = O(log10 n)

Look around the critical phase

(Here dGHP compares two sequences of cc)



p



Some other optimization problems

2-XOR-SAT
n boolean variables
Each constraint xi ⊕ xj = ∗ present with proba p
SAT iif no cycle of odd weight

P (SAT ) = E
[
2−#{Poisson points}] · E [2−#{small unicyclic}

]



Some other optimization problems

2-XOR-SAT

Bipartiteness / 2COL

n boolean variables
Each constraint xi ⊕ xj = ∗ present with proba p
SAT iif no cycle of odd weight

2COL iif no cycle of odd length

P (SAT ) = E
[
2−#{Poisson points}] · E [2−#{small unicyclic}

]

P (length of a core edge odd) ∼ 1/2

⇒ Same asymptotics



Construction of the limit

G (n, p) (C λ
1 ,C

λ
2 , . . . )

T (n, p) (T λ
1 ,T

λ
2 , . . . )

(Tn, 0, 0, . . . ) (M , 0, 0, . . . )

λ→∞ λ→∞

n→∞

n→∞

n→∞

cycle breaking



Many questions

Robustness / Universality?

Random graphs with fixed degree sequence

Percolation cluster on high dimensional tori

Dynamics of the limit

Other applications?



Thank you!


