Critical Random graphs and Applications

Louigi Addario-Berry, *McGill University* Nicolas Broutin, *Inria Paris-Rocquencourt* Christina Goldschmidt, *University of Oxford* Grégory Miermont, *ENS Lyon*

Journées Boole, June 2013

Random graphs, phase transition The structure of critical random graphs The minimum spanning tree More optimization problems Erdős–Rényi random graphs

Definition. Random graph G(n, p)graph on $\{1, 2, ..., n\}$ every edge is present with probability p

 C_i^n the connected components in decreasing order of size

 Phase transition:
 G(n, c/n)

 c < 1:
 $|C_1^n| = O(\log n)$

 c = 1:
 $|C_1^n|, |C_2^n|, \dots, |C_k^n| \approx n^{2/3}$

 c > 1:
 $|C_1^n| = \Omega(n), |C_2^n| = O(\log n)$

inside the critical window $pn = 1 + \lambda n^{-1/3}$

Theorem. (Aldous 1997) $(n^{-2/3}|C_i^n|, s(C_i^n))_{i\geq 1} \rightarrow (|\gamma_i|, s(\gamma_i))_{i\geq 1}$

٨

inside the critical window $pn = 1 + \lambda n^{-1/3}$

Theorem. (Aldous 1997) $(n^{-2/3}|C_i^n|, s(C_i^n))_{i\geq 1} \rightarrow (|\gamma_i|, s(\gamma_i))_{i\geq 1}$

inside the critical window $pn = 1 + \lambda n^{-1/3}$

Theorem. (Aldous 1997) $(n^{-2/3}|C_i^n|, s(C_i^n))_{i\geq 1} \rightarrow (|\gamma_i|, s(\gamma_i))_{i\geq 1}$

$$W^{\lambda}(t) := t\lambda - t^2/2 + W(t)$$

W standard BM

inside the critical window $pn = 1 + \lambda n^{-1/3}$

Theorem. (Aldous 1997) $(n^{-2/3}|C_i^n|, s(C_i^n))_{i\geq 1} \rightarrow (|\gamma_i|, s(\gamma_i))_{i\geq 1}$

Poisson point process rate one in $[0,\infty) imes [0,\infty)$

Phase transitions and fractals

Comparing metric spaces

Gromov-Hausdorff topology.

Comparing measured metric spaces

Gromov-Hausdorff-Prokhorov topology.

Scaling critical random graphs

critical window G(n, p), for $pn = 1 + \lambda n^{-1/3}$ C_i^n the *i*th largest c.c. distances rescaled by $n^{-1/3}$ mass $n^{-2/3}$ on each vertex

Theorem. (ABG2012) $(C_i^n)_{i\geq 1} \rightarrow (\mathscr{C}_i)_{i\geq 1}$

in distribution for the "GHP distance"

$$d_{\mathsf{G}HP}^4(\mathbf{A},\mathbf{B}) = \left(\sum_{i\geq 1} \mathsf{d}_{\mathsf{G}\mathsf{HP}}(A_i,B_i)^4
ight)^{1/4}$$

A (limit) random connected component

The tree encoded by a Brownian excursion (CRT)

Scaling limit of random trees

Theorem. (Aldous) T_n a uniformly random tree on $\{1, 2, ..., n\}$ $n^{-1/2}T_n \to \mathcal{T}_{2e}$

Scaling limit of random trees

Theorem. (Aldous) T_n a uniformly random tree on $\{1, 2, ..., n\}$ $n^{-1/2}T_n \to \mathcal{T}_{2e}$

\mathcal{T}_{2e} : Continuum random tree

A limit connected component I

A limit connected component I

Poisson process rate one under \tilde{e}

For each point $\{\bullet, \bullet, \bullet\}$ *identify* two point of $\mathcal{T}_{2\tilde{e}}$

A limit connected component II

 Sample a connected 3 regular multigraph with 2(s - 1) vertices and 3(s - 1) edges
 respective masses of the bits: Sample a vector (X₁,..., X_{3(s-1)}) ~ Dirichlet(¹/₂,...,¹/₂)
 sample 3(s - 1) independent CRT with 2 distinguished points each

A limit connected component II

- Sample a connected 3 regular multigraph with 2(s - 1) vertices and 3(s - 1) edges
 respective masses of the bits: Sample a vector (X₁,..., X_{3(s-1)}) ~ Dirichlet(¹/₂,...,¹/₂)
- 3. sample 3(s-1) independent CRT

with 2 distinguished points each

A limit connected component II

 Sample a connected 3 regular multigraph with 2(s - 1) vertices and 3(s - 1) edges
 respective masses of the bits:

Sample a vector $(X_1, \ldots, X_{3(s-1)}) \sim \text{Dirichlet}(\frac{1}{2}, \ldots, \frac{1}{2})$

3. sample 3(s-1) independent CRT

with 2 distinguished points each

The minimum spanning tree

Definition.

$$G = (V, E)$$
 a connected graph
 $w_e \ge 0, e \in E$ weights
MST = lightest connected subgraph of G

Kruskal's algorithm.

- 1. sort the edges by increasing weight, e_i , $1 \le i \le |E|$
- 2. Initially set $T_0 = (V, \emptyset)$
- 3. Set $T_{i+1} = T_i \cup \{e_i\}$ iff it does not create a cycle

Kruskal – Example

Random Model

"Mean-field" model graph: complete graph K_n iid uniform weights

A little history.

Frieze ('85): total weight converges to $\zeta(3)$ Janson ('95): CLT Aldous: degree of the node 1

Random Model

"Mean-field" model graph: complete graph K_n iid uniform weights

A little history.

Frieze ('85): total weight converges to $\zeta(3)$ Janson ('95): CLT

Aldous: degree of the node 1

But... all these informations are local

What is the global *metric* structure?

The continuum spanning tree

The rescaled minimum spanning tree

 T_n the minimum spanning tree of K_n $n^{-1/3}d_n$, for d_n the graph distance μ_n mass 1/n on each vertex of $\{1, 2, ..., n\}$

Theorem (ABGM 2013)There exists a random compact metric space \mathscr{M} such that: $T_n \xrightarrow{d}_{GHP} \mathscr{M}$

A few properties of \mathcal{M}

Proposition.

- 1. \mathcal{M} is geodesic
- 2. \mathcal{M} has no loop
- 3. \mathcal{M} has maximum degree 3
- 4. for μ -almost every x, deg(x) = 1

A few properties of \mathcal{M}

Proposition.

- 1. \mathcal{M} is geodesic
- 2. \mathscr{M} has no loop
- 3. \mathcal{M} has maximum degree 3
- 4. for μ -almost every x, deg(x) = 1

Proposition. *M* is not Aldous' Continuum Random Tree

What does it look like?

$$(X, d)$$
 a compact metric space
 $N(X, r) = \min$ number of balls of radius r to cover X

$$\underline{\dim}(X) = \lim \inf_{r \to 0} \frac{\log N(X, r)}{\log(1/r)} \qquad \overline{\dim}(X) = \limsup \sup_{r \to 0} \frac{\log N(X, r)}{\log(1/r)}$$

box-counting dimension

dim(X) is the common value, if they are equal

Dimensions of continuum random trees

Theorem. $dim(\mathscr{M}) = 3 \qquad \text{with probability one}$

while

Theorem. dim(CRT) = 2 with probability one

Forward-Backward approach

Two main tools. In Kruskal's algorithm

Track the metric structure as the edges are added.

Track the metric structure as the edges are removed

Strategy.

- 1. Build G(n, p): Add all edges until some weight p
- 2. Remove the edges that should not have been put

Forward-Backward approach

Two main tools. In Kruskal's algorithm

- Track the metric structure as the edges are added.
- Track the metric structure as the edges are removed

2'. Conditional on G(n, p) = G,

construct a tree **distributed** as MST(G)

When is the metric structure built?

T(n, p) portion of the MST that is in G(n, p)(Here d_{GHP} compares two sequences of cc)

Evolution of distances: for all $p < (1 - \epsilon)/n$

 $d_{\mathsf{GHP}}(T(n,p);\underline{0}) = O(\log n)$

for all $p > (1 + \epsilon)/n$ $d_{GHP}(T(n, p); ((T(n, 1), \underline{0})) = O(\log^{10} n)$

Look around the critical phase

р

Some other optimization problems

2-XOR-SAT

n boolean variables

Each constraint $x_i \oplus x_j = *$ present with proba pSAT iif no cycle of odd weight

$$\mathbf{P}(SAT) = \mathbf{E}\left[2^{-\#\{\text{Poisson points}\}}\right] \cdot \mathbf{E}\left[2^{-\#\{\text{small unicyclic}\}}
ight]$$

Some other optimization problems

2-XOR-SAT

n boolean variables

Each constraint $x_i \oplus x_j = *$ present with proba pSAT iif no cycle of odd weight

$$\mathsf{P}\left(SAT
ight) = \mathsf{E}\left[2^{-\#\{ ext{Poisson points}\}}
ight] \cdot \mathsf{E}\left[2^{-\#\{ ext{small unicyclic}\}}
ight]$$

Bipartiteness / 2COL

2COL iif no cycle of odd length

 ${\sf P} \, ({\sf length} \, \, {\sf of} \, {\sf a} \, \, {\sf core} \, \, {\sf edge} \, \, {\sf odd}) \sim 1/2$

 \Rightarrow Same asymptotics

Construction of the limit

Many questions

Robustness / Universality?

Random graphs with fixed degree sequence Percolation cluster on high dimensional tori

Dynamics of the limit

Other applications?

Thank you!