Critical Random graphs and Applications

Nicolas Broutin, Inria Paris-Rocquencourt Christina Goldschmidt, University of Oxford Louigi Addario-Berry, McGill University Grégory Miermont, ENS Lyon

Journées Boole, June 2013

Random graphs, phase transition The structure of critical random graphs The minimum spanning tree More optimization problems

Erdős–Rényi random graphs

Definition. Random graph $G(n, p)$ graph on $\{1, 2, \ldots, n\}$ every edge is present with probability p

 C_i^n ζ_i^n the connected components in decreasing order of size

Phase transition: $G(n, c/n)$ $c < 1$: $c=1$: $c > 1$: $|C_1^n$ $\left\vert \Gamma\right\vert ^{n} |=O(\log n)$ $|C_1^n$ $\binom{n}{1}, \binom{n}{2}$ $\binom{n}{2}, \ldots, \lfloor C_k^n \rfloor$ $\vert k \vert \approx n^{2/3}$ $|C_1^n$ $\left| \frac{n}{1} \right| = \Omega(n), \quad |C_2^n|$ $\left\vert \frac{n}{2}\right\vert =O(\log n)$

inside the critical window $\rho n = 1 + \lambda n^{-1/3}$

Theorem. (Aldous 1997) $(n^{-2/3}|C_i^n)$ $\binom{n}{i}, s(C_i^n)$ $\binom{n}{i})_{i\geq 1} \rightarrow (|\gamma_i|, \mathsf{s}(\gamma_i))_{i\geq 1}$

 \mathbf{A}

inside the critical window $\rho n = 1 + \lambda n^{-1/3}$

Theorem. (Aldous 1997) $(n^{-2/3}|C_i^n)$ $\binom{n}{i}, s(C_i^n)$ $\binom{n}{i})_{i\geq 1} \rightarrow (|\gamma_i|, \mathsf{s}(\gamma_i))_{i\geq 1}$

inside the critical window $\rho n = 1 + \lambda n^{-1/3}$

Theorem. (Aldous 1997) $(n^{-2/3}|C_i^n)$ $\binom{n}{i}, s(C_i^n)$ $\binom{n}{i})_{i\geq 1} \rightarrow (|\gamma_i|, \mathsf{s}(\gamma_i))_{i\geq 1}$

$$
W^{\lambda}(t) := t\lambda - t^2/2 + W(t)
$$

W standard BM

inside the critical window $\rho n = 1 + \lambda n^{-1/3}$

Theorem. (Aldous 1997) $(n^{-2/3}|C_i^n)$ $\binom{n}{i}, s(C_i^n)$ $\binom{n}{i})_{i\geq 1} \rightarrow (|\gamma_i|, \mathsf{s}(\gamma_i))_{i\geq 1}$

Poisson point process rate one in $[0, \infty) \times [0, \infty)$

Phase transitions and fractals

Comparing metric spaces

Gromov-Hausdorff topology.

Comparing measured metric spaces

Gromov-Hausdorff-Prokhorov topology.

Scaling critical random graphs

critical window $G(n,p)$, for $pn=1+\lambda n^{-1/3}$

 C_i^n i^n the *i*th largest c.c.

distances rescaled by $n^{-1/3}$ mass $n^{-2/3}$ on each vertex

Theorem. (ABG2012) (C_i^n) $\binom{n}{i}$ i $\geq 1 \rightarrow (\mathscr{C}_i)_{i \geq 1}$

in distribution for the "GHP distance"

$$
d_{GHP}^4(\mathbf{A}, \mathbf{B}) = \left(\sum_{i \geq 1} d_{GHP}(A_i, B_i)^4\right)^{1/4}
$$

A (limit) random connected component

The tree encoded by a Brownian excursion (CRT)

Scaling limit of random trees

Theorem. (Aldous) T_n a uniformly random tree on $\{1, 2, \ldots, n\}$ $n^{-1/2}$ $\mathcal{T}_n \rightarrow \mathcal{T}_{2e}$

Scaling limit of random trees

Theorem. (Aldous) T_n a uniformly random tree on $\{1, 2, \ldots, n\}$ $n^{-1/2}$ $\mathcal{T}_n \rightarrow \mathcal{T}_{2e}$

\mathcal{T}_{2e} : Continuum random tree

A limit connected component I

A limit connected component I

Poisson process rate one under \tilde{e}

For each point $\{\bullet,\bullet,\bullet\}$ *identify* two point of $\mathcal{T}_{2\tilde{e}}$

A limit connected component II

1. Sample a connected 3 regular multigraph with $2(s - 1)$ vertices and $3(s - 1)$ edges 2. respective masses of the bits:

Sample a vector $(X_1,\ldots,X_{3(s-1)})\sim \mathsf{Dirichlet}(\frac12,\ldots,\frac12)$ $\frac{1}{2}$

3. sample $3(s - 1)$ independent CRT

with 2 distinguished points each

A limit connected component II

1. Sample a connected 3 regular multigraph with $2(s - 1)$ vertices and $3(s - 1)$ edges 2. respective masses of the bits:

Sample a vector $(X_1,\ldots,X_{3(s-1)})\sim \mathsf{Dirichlet}(\frac12,\ldots,\frac12)$ $\frac{1}{2}$

3. sample $3(s - 1)$ independent CRT

with 2 distinguished points each

A limit connected component II

1. Sample a connected 3 regular multigraph with $2(s - 1)$ vertices and $3(s - 1)$ edges 2. respective masses of the bits:

Sample a vector $(X_1,\ldots,X_{3(s-1)})\sim \mathsf{Dirichlet}(\frac12,\ldots,\frac12)$ $\frac{1}{2}$

3. sample $3(s - 1)$ independent CRT

with 2 distinguished points each

The minimum spanning tree

Definition.
\n
$$
G = (V, E)
$$
 a connected graph
\n $w_e \geq 0, e \in E$ weights
\n $MST =$ lightest connected subgraph of G

Kruskal's algorithm.

- 1. sort the edges by increasing weight, e_i , $1 \le i \le |E|$
- 2. Initially set $T_0 = (V, \varnothing)$
- 3. Set $\mathcal{T}_{i+1} = \mathcal{T}_{i} \cup \{e_i\}$ iff it does not create a cycle

Kruskal – Example

Random Model

graph: complete graph K_n iid uniform weights "Mean-field" model

A little history.

Frieze ('85): total weight converges to $\zeta(3)$ Aldous: degree of the node 1 Janson ('95): CLT

Random Model

graph: complete graph K_n iid uniform weights "Mean-field" model

A little history.

Frieze ('85): total weight converges to $\zeta(3)$ Janson ('95): CLT

Aldous: degree of the node 1

But... all these informations are local

What is the global *metric* structure?

The continuum spanning tree

The rescaled minimum spanning tree

 T_n the minimum spanning tree of K_n $n^{-1/3}$ d_n, for d_n the graph distance $\mu_{\textit{n}}$ mass $1/n$ on each vertex of $\{1,2,\ldots,n\}$

T_n d $\frac{u}{\longrightarrow}$ GHP M Theorem (ABGM 2013)There exists a random compact metric space \mathscr{M} such that:

A few properties of M

Proposition.

- 1. M is geodesic
- 2. *M* has no loop
- 3. M has maximum degree 3
- 4. for μ -almost every x, deg $(x) = 1$

A few properties of M

Proposition.

- 1. M is geodesic
- 2. *M* has no loop
- 3. M has maximum degree 3
- 4. for μ -almost every x, $deg(x) = 1$

Proposition. M is not Aldous' Continuum Random Tree

What does it look like?

$$
(X, d)
$$
 a compact metric space
 $N(X, r) = min$ number of balls of radius r to cover X

$$
\underline{\dim}(X) = \liminf_{r \to 0} \frac{\log N(X,r)}{\log(1/r)} \qquad \overline{\dim}(X) = \limsup_{r \to 0} \frac{\log N(X,r)}{\log(1/r)}
$$

box-counting dimension

 $dim(X)$ is the common value, if they are equal

Dimensions of continuum random trees

Theorem. $dim(\mathcal{M}) = 3$ with probability one

while

Theorem. $dim(CRT) = 2$ with probability one

Forward-Backward approach

Two main tools. In Kruskal's algorithm

Track the metric structure as the edges are added.

Track the metric structure as the edges are removed

Strategy.

- 1. Build $G(n, p)$: Add all edges until some weight p
- 2. Remove the edges that should not have been put

Forward-Backward approach

Two main tools. In Kruskal's algorithm

- Track the metric structure as the edges are added.
- Track the metric structure as the edges are removed

2'. Conditional on $G(n, p) = G$,

construct a tree distributed as $MST(G)$

When is the metric structure built?

 $T(n, p)$ portion of the MST that is in $G(n, p)$ (Here d _{GHP} compares two sequences of cc)

Evolution of distances: for all $p < (1 - \epsilon)/n$ $d_{GHP}(T(n, p); 0) = O(log n)$ for all $p > (1 + \epsilon)/n$ $d_{GHP}(T(n, p); ((T(n, 1), 0)) = O(log^{10} n)$

Look around the critical phase

 \boldsymbol{p}

Some other optimization problems

2-XOR-SAT

n boolean variables

Each constraint $x_i \oplus x_j = *$ present with proba p SAT iif no cycle of odd weight

$$
\mathsf{P}\left(SAT\right) = \mathsf{E}\left[2^{-\#\{\text{Poisson points}\}}\right] \cdot \mathsf{E}\left[2^{-\#\{\text{small unicyclic}\}}\right]
$$

Some other optimization problems

2-XOR-SAT

n boolean variables

Each constraint $x_i \oplus x_j = *$ present with proba p SAT iif no cycle of odd weight

$$
\mathsf{P}\left(SAT\right)=\mathsf{E}\left[2^{-\#\{\text{Poisson points}\}}\right]\cdot\mathsf{E}\left[2^{-\#\{\text{small unicyclic}\}}\right]
$$

Bipartiteness / 2COL

2COL iif no cycle of odd length

P (length of a core edge odd) $\sim 1/2$

 \Rightarrow Same asymptotics

Construction of the limit

Many questions

Robustness / Universality?

Random graphs with fixed degree sequence Percolation cluster on high dimensional tori

Dynamics of the limit

Other applications?

Thank you!