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A threshold phenomenon for 3-SAT

Prn.cn(3-SAT) : probability that a 3-CNF formula over n variables with
cn clauses is satisfiable

@ The transition from satisfiability to unsatisfiability is sharp
(Friedgut, 1998)

@ The critical ratio is estimated at around 4.25
@ Only lower and upper bounds have been established

Prn c.n(3-SAT) — 1 for ¢ < 3.52

(Kaporis, Kirousis, Lalas, 2003) use the analysis of algorithms

Prnc.n(3-SAT) — 0 for ¢ > 4.4898

(Diaz, Kirousis, Mitsche, Pérez, 2009)
previously 4.506 (Dubois, Boufkhad, Mandler, 2000)
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A threshold phenomenon for 2-SAT

@ The transition for 2-SAT is sharp and the critical ratio is 1
(Chvatal & Reed, Goerdt, 1992)
They use first and second moment methods

@ The scaling window is known (Bollobas et al., 2001)

@ The probability of satisfiablility of a random 2-CNF at the critical
ratio ¢ = 1 has been experimentally estimated to

Prn7n(2'SAT) ~ 09

(Deroulers, Monasson 2006)
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What makes the difference (a posteriori) ?

@ There is a simple combinatorial characterization of unsatisfiable
2-CNF formulas :
» 2-SATisin P
» A linear time algorithm allows simulations at a very high scale
» For the threshold, one can focus on the emergence of the most
likely unsatisfiable formulas in random formulas
@ Such a characterization is missing for 3-CNF formulas :
» 3-SAT is NP-complete.
» Simulations are therefore hard to run
» For the threshold, no focus on typical unsatisfiable formulas is
known
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Nature of the transition for generalized satisfiability

Given a constraint satisfaction problem, depending on the size of the
scaling window the transition SAT/UNSAT is either sharp or coarse.

Generalized satisfiability : Formulas can be seen are hypergraphs.

Theorem (Creignou, Daudé 2009)

If every tree-formula and every unicyclic formulas are satisfiable, then
the satisfiability property has a sharp threshold .

Typical coarse transition : 1-SAT and 2-XOR-SAT.
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What do we learn ?

How to make progress on the study of phase transition for monotone
properties ?

@ Broaden the scope
© Study variants on combinatorially robust instances
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Random Formulas Generator

Random instances are useful for

@ providing the basis for theoretical investigations
@ testing SAT/QSAT/non-PCNF solvers

@ evaluating the performance of these solvers (hard instances are at
the threshold)

[g]bfGen : a general formula generator which creates formula
instances by interpreting the random model specification

http ://fmv.jku.at/qbfgen/

(Creignou, Egly, Seidl 2012)
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Constraints
f:{0,1}kx — {0,1},7 C {1,...,k}

f-(x) = f(x™) where x" is obtained by complementing those bits in x
indexed by elements of 7.

{x1,...,xn} a set of variables

An n-{f}-constraint is given by :
@ aone-to-one function ¢: {1,...,k} — {1,...,n} (scope),
@ asubsetr C {1,...,k} (negated positions),

is denoted by
C=(fp1)

and stands for
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Example

@ f:{0,1}® — {0,1} such that f~'(1) = {0,1}3\ {000},
f(x,y,2) = (xVyV z)
® p(1)=3,9(2) =5,4(3) =4
o r={1,2}
f(x.y.2)=(XVyV2)
The constraint C = (f, ¢, 7) stands for (X3 V X5 \VV X4).
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Constraint satisfied by an assignment

C=(fp,7), I: {1,...,n} — {0,1}.
m(1, ») the motif of / pinpointed by ¢ :

m(l,¢) = (I(p(1)), - -, l((k)))
The status of the constraint C with respect to /.

C(I) = fT(m(/7 90))7

The n-assignment / satisfies C if C(/) = 1.
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Example

@ f:{0,1}® — {0,1} such that 7~1(1) = {0,1}°\ {000},
f(x.y.2) = (xVyV 2)
@ p(1)=3,9(2) =5, p(3) =4
e 7={1,2}
fT(X,y,Z) = ()_(\/_}_/\/Z)
The constraint C = (f, o, 7) stands for (X3 V X5 VV X4)

| the all-one assignment, C(/) = £.(1,1,1) = 1
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Schaefer’s framework : F-formulas

Given F a finite set of Boolean functions, an F-constraint is a
constraint using a function f from F.

A sequence of F-constraints,
over nvariables is an (n, L)-F-formula

o If 7 = {f} where f(x,y,z) = (xVyV2z)
» an F-constraint is a 3-clause
» an F-formula is 3-CNF
o If F ={g} where g(x,y) = (x®y)
» an F-constraint is a 2-XOR-clause
» an F-formula is 2-XOR-CNF

(AMU, Diderot, Grenoble) Boole
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Sensitivity of Boolean functions

The sensitivity set of f at a particular input x, S(f, x) :

S(f,x) ={t : 1 <t<k,f(x)#Ff(xH)}.

The sensitivity of f at x :

s(f, x) = |S(f, x)|

(AMU, Diderot, Grenoble)
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Sensitivity of constraints

Let C = (f, ¢, 7) be an n-constraint and / be a truth assignment. The
sensitivity set of C at / :

S(C, )= {t:1<t<n, CI)+C(}.

The sensitivity of C at the truth assignment /is :

s(C, 1) :=[S(C, ).

(AMU, Diderot, Grenoble) Boole 17 /36



Sensitivity of formulas

& = (Cy,---,Cy) aformula, / a truth assignment

o) = (Ci(]),---, Cu())

The sensitivity set of ¢ at /:

S(d,1):={t:1<t<n, o) # ("}

(AMU, Diderot, Grenoble)
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Enumeration

Let / be a truth assignment.

{® : dis an(n, L)-F- formula,®(/) = (1,...,1) and S($, /) = S}|

= ka7 (IS)

The number of formulas satisfied by / having a given sensitivity set S
at / is independent from /, depends on the cardinality of S only and
can be expressed according to the sensitivity of the functions in F.

(Creignou,Daudé 2013)
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Applications

This result allows the enumeration of F-formulas
@ having a given truth assignment as a sufficiently isolated solution

@ having a given truth assignment as a locally maximal solution
(useful for threshold upperbounds, method of O. Dubois)
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Previous studies

Problem Scale Nature critical ratio complexity
2-SAT L=46(n) | Sharp =1 P
3-XOR-SAT | L=6(n) | Sharp | cxors ~ 0.918 P
2-XOR-SAT | L=146(n) | Coarse P

((Chvatal & Reed, Goerdt, 1992) ), (Dubois, Mandler 2002)
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(1,2)-QSAT

A (1,2)-QCNF-formula is a closed quantified formula of the following
type
vX3Y p(X,Y)

@ Xhas m= |«alog n| variables
@ Y has nvariables
@ each clause in ¢ has 1 literal from X and 2 from Y
Sharp threshold : For any value of «, we give the exact location of the

associated critical ratio, a(«).
(Creignou, Daudé, Egly, Rossignol 2009)
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The 2-XOR-SAT problem and its graphical
representation

@ Aninstance : (vq VvV Vva) A (—VyV V) A(=Vq VvV —Va)

@ A solution : SAT with (vq =1,vo =0,v3 =1).

@ Localization of the threshold : n variables, m = ¢ x n clauses
randomly picked from the set of 4(7) clauses.

¢ <1 Proba SAT — 1, ¢ > 1 Proba SAT — 0.
Underlying combinatorial structures : directed graphs.

X=1=y=1

Write xXVy as {ﬂy=1=>X=1

Characterization : SAT iff no directed path between x and —x
(and vice-versa).

Proof. First and second moments method [Goerdt 92, De la Vega
92, Chvatal, Reed 92].
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2-XOR-SAT and the Boole Project

Main motivations and results

@ What can be the contributions of ENUMERATIVE/ANALYTIC
COMBINATORICS to SAT/CSP-like problems ?

@ MONASSON (2007) inferred that (statistical physics) :

lim e proba [2XORSAT(n, 2)] = O(1),

n—-+o00

where “critical exponent” = 1/12 .

@ We have shown that “critical exponent” is in fact = 1/12 and we
made explicit the hidden constant behind the O(1).
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2-XOR-SAT and the Boole Project

Main motivations and results

@ What can be the contributions of ENUMERATIVE/ANALYTIC
COMBINATORICS to SAT/CSP-like problems ?

@ MONASSON (2007) inferred that (statistical physics) :

lim e proba [2XORSAT(n, 2)] = O(1),

n—-+o00

where “critical exponent” = 1/12 .

@ We have shown that “critical exponent” is in fact = 1/12 and we
made explicit the hidden constant behind the O(1).

Remark :

This was the beginning of a whole line of research within the Boole
Project cf. [Vonjy Rasendrahasina 2012 and Elie de Panafieu’s theses
~ 2014].
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Random 2-XOR-SAT

@ Ex:
X1OX =1, %PXx3=0,X1DX3=0,x3Dx4=1,---.

@ General form : AX = C where A has m rows and 2 columns and C
is @ m-dimensional 0/1 vector.

@ Distribution : uniform. We pick m clauses of the form
X; @ x; = ¢ € {0, 1} from the set of n(n — 1) clauses.

@ Underlying structures : graphs with weighted edges
X @y =e <= edges of weight ¢ € {0, 1}.

Characterisation :
SAT iff no elementary cycle of odd weight. J

(AMU, Diderot, Grenoble) Boole 26/36



Main ideas of our approach

A basic scheme

@ Enumeration of “SAT”-graphs (graphs without cycles of odd
weight) by means of generating functions.

© Use the obtained results with analytic combinatorics to compute :

Nbr of configurations without cycles of odd weight

Prob. SAT = Nbr total of configurations

(AMU, Diderot, Grenoble) Boole 27/36



Taste of our results : the whole window

\
] \
\
. \
5 [\
Y I — - ﬁs.&"..

p(n,cn) £ proba [2-XOR with n variables , cn clauses ] is SAT
for n= 1000, n = 2000 and the theoretical function : e%/2(1 — 2¢)'/4.
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Taste of our results : rescaling the critical window

Rescaling at the point “zero”,i.,e c=1/2: n= 1000, n= 2000 and
limp_ee N'/12x  p(n,n/2 + un?/3) as a function of 1.

(AMU, Diderot, Grenoble) Boole 29/36



Enumerating graphs of 2-XORSAT.

We will enumerate the connected graphs without cycles of
odd weight according to two parameters : number of vertices n

and number of edges n + /. ¢ £ excess.
Let

zn
Cg(Z) = Z Cn7n+gm .
n>0
What are the series C, ?
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Enumerating graphs of 2-XORSAT.

We will enumerate the connected graphs without cycles of
odd weight according to two parameters : number of vertices n

and number of edges n + /7. ¢ £ excess.
Let

zn
n>0
What are the series C, ?

Th.
Ci(z) = %Wg(QZ)

with W, = Exponential generating functions of connected graphs
WRIGHT (1977).
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Main ideas behind the enumerations

On a connected “SAT”-graph with n vertices and n + ¢ edges, the
edges of a spanning tree can be colored in 27~' ways. The colors of
the other edges are “determined”.
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Main ideas behind the enumerations

On a connected “SAT”-graph with n vertices and n + ¢ edges, the
edges of a spanning tree can be colored in 27~ ways. The colors of
the other edges are “determined”.

Remark :

As we obtained the generating functions, the whole machinery to study
random graphs apply to random 2-XOR-SAT to get the results.
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Random MAX-2-XOR-SAT

@ MAx-2-XORSAT is an NP-optimization problem (NPO). The
corresponding decision problem is in NP (deciding if the size of
the MAX is k ...).

@ MAX/MIN problems are interesting (and difficult) in randomness
context.

@ PREVIOUS WORKS : [Coppersmith, Gamarnik, Hajiaghayi, Sorkin 04]
Expectations of the Maximum number of satisfiable clauses in
MAX-2-SAT and MAX-CUT for the subcritical phases. Bounds of
these expectations for some cases (namely for the critical and
supercritical phases of random graphs) !

@ OUR WORK :
Quantification of the Minimum number of clauses to remove in
order to get satisfiable formula.
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MAX-CUT ~ MAX-2-XORSAT (i)

CUT MAX-CUT
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MAX-CUT ~ MAX-2-XORSAT (ii)

Graph —— MAX-2-XORSAT
1

1 1
Ll <)
1 1

1

|

MAX-CUT
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Our results on MAX-2-XOR-SAT

(Daudé, Martinez, Rasendrahasina, R. 2012)

@ Precise results such as convergence in distribution to Poisson r.v
and then to Gaussian r.v. if the random graph is very sparse

@ “Only” bounds of the size of the MAX-CUT as soon as the giant
component of the random graph is born (truly disappointing !).

@ We have a conjecture about the size of the MAX-CUT in the latter
case (confirmed by colleagues empirical data).

(AMU, Diderot, Grenoble) Boole 35/36



Conclusion and perspectives

The enumerative/analytic approaches and the random
2-XOR-SAT problem has lead to several directions.
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talk].
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Conclusion and perspectives

The enumerative/analytic approaches and the random
2-XOR-SAT problem has lead to several directions.

Similar methods worked on other problems such as
@ bipartiteness (or 2-COL).

@ 2-QXORSAT (quantified formula) and generalizations (cf. [Elie’s
talk].

@ planarity

but not completely on MAX-2-COL, MAX-CUT,
MIN-VERTEX-COVER, MIN-BISECTION, MAX-PLANAR
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