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A threshold phenomenon for 3-SAT

Prn,cn(3-SAT) : probability that a 3-CNF formula over n variables with
cn clauses is satisfiable

The transition from satisfiability to unsatisfiability is sharp
(Friedgut, 1998)
The critical ratio is estimated at around 4.25
Only lower and upper bounds have been established

Prn,c·n(3-SAT)→ 1 for c ≤ 3.52

(Kaporis, Kirousis, Lalas, 2003) use the analysis of algorithms

Prn,c·n(3-SAT)→ 0 for c ≥ 4.4898

(Diaz, Kirousis, Mitsche, Pérez, 2009)
previously 4.506 (Dubois, Boufkhad, Mandler, 2000)
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A threshold phenomenon for 2-SAT

The transition for 2-SAT is sharp and the critical ratio is 1
(Chvatal & Reed, Goerdt, 1992)
They use first and second moment methods
The scaling window is known (Bollobàs et al., 2001)
The probability of satisfiablility of a random 2-CNF at the critical
ratio c = 1 has been experimentally estimated to

Prn,n(2-SAT) ∼ 0.9

(Deroulers, Monasson 2006)
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What makes the difference (a posteriori) ?

There is a simple combinatorial characterization of unsatisfiable
2-CNF formulas :

I 2-SAT is in P
I A linear time algorithm allows simulations at a very high scale
I For the threshold, one can focus on the emergence of the most

likely unsatisfiable formulas in random formulas
Such a characterization is missing for 3-CNF formulas :

I 3-SAT is NP-complete.
I Simulations are therefore hard to run
I For the threshold, no focus on typical unsatisfiable formulas is

known
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Nature of the transition for generalized satisfiability

Given a constraint satisfaction problem, depending on the size of the
scaling window the transition SAT/UNSAT is either sharp or coarse.

Generalized satisfiability : Formulas can be seen are hypergraphs.

Theorem (Creignou, Daudé 2009)
If every tree-formula and every unicyclic formulas are satisfiable, then
the satisfiability property has a sharp threshold .

Typical coarse transition : 1-SAT and 2-XOR-SAT.
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What do we learn ?

How to make progress on the study of phase transition for monotone
properties ?

1 Broaden the scope
2 Study variants on combinatorially robust instances
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Random Formulas Generator

Random instances are useful for

providing the basis for theoretical investigations
testing SAT/QSAT/non-PCNF solvers
evaluating the performance of these solvers (hard instances are at
the threshold)

[q]bfGen : a general formula generator which creates formula
instances by interpreting the random model specification

http ://fmv.jku.at/qbfgen/

(Creignou, Egly, Seidl 2012)
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Constraints
f : {0,1}k −→ {0,1}, τ ⊆ {1, . . . , k}

fτ (x) = f (xτ ) where xτ is obtained by complementing those bits in x
indexed by elements of τ .

{x1, . . . , xn} a set of variables

An n-{f}-constraint is given by :
a one-to-one function ϕ : {1, . . . , k} → {1, . . . ,n} (scope),
a subset τ ⊆ {1, . . . , k} (negated positions),

is denoted by
C = (f , ϕ, τ)

and stands for
C = fτ (xϕ(1), . . . xϕ(k))

(AMU, Diderot, Grenoble) Boole 11 / 36



Example

f : {0,1}3 −→ {0,1} such that f−1(1) = {0,1}3 \ {000},
f (x , y , z) = (x ∨ y ∨ z)

ϕ(1) = 3, ϕ(2) = 5, ϕ(3) = 4
τ = {1,2}

fτ (x , y , z) = (x̄ ∨ ȳ ∨ z)

The constraint C = (f , ϕ, τ) stands for (x̄3 ∨ x̄5 ∨ x4).
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Constraint satisfied by an assignment

C = (f , ϕ, τ), I : {1, . . . ,n} −→ {0,1}.

m(I, ϕ) the motif of I pinpointed by ϕ :

m(I, ϕ) := (I(ϕ(1)), . . . , I(ϕ(k)))

The status of the constraint C with respect to I.

C(I) := fτ (m(I, ϕ)),

The n-assignment I satisfies C if C(I) = 1.
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Example

f : {0,1}3 −→ {0,1} such that f−1(1) = {0,1}3 \ {000},
f (x , y , z) = (x ∨ y ∨ z)

ϕ(1) = 3, ϕ(2) = 5, ϕ(3) = 4
τ = {1,2}

fτ (x , y , z) = (x̄ ∨ ȳ ∨ z)

The constraint C = (f , ϕ, τ) stands for (x̄3 ∨ x̄5 ∨ x4)

I the all-one assignment, C(I) = fτ (1,1,1) = 1
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Schaefer’s framework : F-formulas

Given F a finite set of Boolean functions, an F-constraint is a
constraint using a function f from F .

A sequence of F-constraints,
over n variables is an (n,L)-F-formula

If F = {f} where f (x , y , z) = (x ∨ y ∨ z)
I an F-constraint is a 3-clause
I an F-formula is 3-CNF

If F = {g} where g(x , y) = (x ⊕ y)
I an F-constraint is a 2-XOR-clause
I an F-formula is 2-XOR-CNF
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Sensitivity of Boolean functions

The sensitivity set of f at a particular input x , S(f , x) :

S(f , x) = {t : 1 ≤ t ≤ k , f (x) 6= f (x t )}.

The sensitivity of f at x :

s(f , x) = |S(f , x)|
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Sensitivity of constraints

Let C = (f , ϕ, τ) be an n-constraint and I be a truth assignment. The
sensitivity set of C at I :

S(C, I) := {t : 1 ≤ t ≤ n, C(I) 6= C(I t )}.

The sensitivity of C at the truth assignment I is :

s(C, I) := |S(C, I)|.
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Sensitivity of formulas

Φ = (C1, · · · ,CL) a formula, I a truth assignment

Φ(I) = (C1(I), . . . ,CL(I))

The sensitivity set of Φ at I :

S(Φ, I) := {t : 1 ≤ t ≤ n, Φ(I) 6= Φ(I t )}.
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Enumeration

Let I be a truth assignment.

|{Φ : Φ is an(n,L)-F- formula,Φ(I) = (1, . . . ,1) and S(Φ, I) = S}|

= Γ1
k ,n,L,F (|S|)

The number of formulas satisfied by I having a given sensitivity set S
at I is independent from I , depends on the cardinality of S only and
can be expressed according to the sensitivity of the functions in F .

(Creignou,Daudé 2013)
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Applications

This result allows the enumeration of F-formulas
having a given truth assignment as a sufficiently isolated solution
having a given truth assignment as a locally maximal solution
(useful for threshold upperbounds, method of O. Dubois)
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Previous studies

Problem Scale Nature critical ratio complexity
2-SAT L = θ(n) Sharp c2 = 1 P

3-XOR-SAT L = θ(n) Sharp cXOR,3 ∼ 0.918 P
2-XOR-SAT L = θ(n) Coarse P

((Chvatal & Reed, Goerdt, 1992) ), (Dubois, Mandler 2002)
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(1,2)-QSAT

A (1,2)-QCNF-formula is a closed quantified formula of the following
type

∀X∃Y ϕ(X ,Y )

Xhas m = bα log nc variables
Y has n variables
each clause in ϕ has 1 literal from X and 2 from Y

Sharp threshold : For any value of α, we give the exact location of the
associated critical ratio, a(α).
(Creignou, Daudé, Egly, Rossignol 2009)
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The 2-XOR-SAT problem and its graphical
representation

An instance : (v1 ∨ v2) ∧ (¬v1 ∨ v3) ∧ (¬v1 ∨ ¬v2)

A solution : SAT with (v1 = 1,v2 = 0,v3 = 1).
Localization of the threshold : n variables, m = c × n clauses
randomly picked from the set of 4

(n
2

)
clauses.

c < 1 Proba SAT→ 1, c > 1 Proba SAT→ 0.
Underlying combinatorial structures : directed graphs.

Write x ∨ y as

{
¬x = 1 =⇒ y = 1
¬y = 1 =⇒ x = 1

Characterization : SAT iff no directed path between x and ¬x
(and vice-versa).
Proof. First and second moments method [Goerdt 92, De la Vega
92, Chvàtal, Reed 92].
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2-XOR-SAT and the Boole Project
Main motivations and results

What can be the contributions of ENUMERATIVE/ANALYTIC
COMBINATORICS to SAT/CSP-like problems ?
MONASSON (2007) inferred that (statistical physics) :

lim
n→+∞

ncritical exponent × Proba
[
2XORSAT(n,

n
2

)
]

= O(1) ,

where “critical exponent” = 1/12 .

We have shown that “critical exponent” is in fact = 1/12 and we
made explicit the hidden constant behind the O(1).

Remark :
This was the beginning of a whole line of research within the Boole
Project cf. [Vonjy Rasendrahasina 2012 and Elie de Panafieu’s theses
∼ 2014].
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Random 2-XOR-SAT

Ex :
x1 ⊕ x2 = 1, x2 ⊕ x3 = 0, x1 ⊕ x3 = 0, x3 ⊕ x4 = 1, · · · .
General form : AX = C where A has m rows and 2 columns and C
is a m-dimensional 0/1 vector.
Distribution : uniform. We pick m clauses of the form
xi ⊕ xj = ε ∈ {0, 1} from the set of n(n − 1) clauses.
Underlying structures : graphs with weighted edges

x ⊕ y = ε⇐⇒ edges of weight ε ∈ {0, 1}.

Characterisation :
SAT iff no elementary cycle of odd weight.
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Main ideas of our approach

A basic scheme
1 Enumeration of “SAT”-graphs (graphs without cycles of odd

weight) by means of generating functions.

2 Use the obtained results with analytic combinatorics to compute :

Prob. SAT =
Nbr of configurations without cycles of odd weight

Nbr total of configurations
.
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Taste of our results : the whole window

0,8

0,4

0

1

0,6

0,2

c

0,2 0,80,60,40

p(n,cn)
def
= Proba [2-XOR with n variables ,cn clauses ] is SAT

for n = 1000 , n = 2000 and the theoretical function : ec/2(1− 2c)1/4.
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Taste of our results : rescaling the critical window

1,6

0,8

1,2

0,4

0
2 4-2 0-4

Rescaling at the point “zero”, i.e c = 1/2 : n = 1000 , n = 2000 and
limn→∞ n1/12×︸ ︷︷ ︸ p(n,n/2 + µn2/3) as a function of µ.
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Enumerating graphs of 2-XORSAT.

We will enumerate the connected graphs without cycles of
odd weight according to two parameters : number of vertices n
and number of edges n + `. ` def

= excess.
Let

C`(z) =
∑
n>0

cn,n+`
zn

n!
.

What are the series C` ?

Th.

C`(z) =
1
2

W`(2z)

with W` = Exponential generating functions of connected graphs
WRIGHT (1977).

(AMU, Diderot, Grenoble) Boole 30 / 36



Enumerating graphs of 2-XORSAT.

We will enumerate the connected graphs without cycles of
odd weight according to two parameters : number of vertices n
and number of edges n + `. ` def

= excess.
Let

C`(z) =
∑
n>0

cn,n+`
zn

n!
.

What are the series C` ?

Th.

C`(z) =
1
2

W`(2z)

with W` = Exponential generating functions of connected graphs
WRIGHT (1977).

(AMU, Diderot, Grenoble) Boole 30 / 36



Main ideas behind the enumerations
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On a connected “SAT”-graph with n vertices and n + ` edges, the
edges of a spanning tree can be colored in 2n−1 ways. The colors of
the other edges are “determined”.

Remark :
As we obtained the generating functions, the whole machinery to study
random graphs apply to random 2-XOR-SAT to get the results.
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Random MAX-2-XOR-SAT
MAX-2-XORSAT is an NP-optimization problem (NPO). The
corresponding decision problem is in NP (deciding if the size of
the MAX is k ...).

MAX/MIN problems are interesting (and difficult) in randomness
context.

PREVIOUS WORKS : [Coppersmith, Gamarnik, Hajiaghayi, Sorkin 04]
Expectations of the Maximum number of satisfiable clauses in
MAX-2-SAT and MAX-CUT for the subcritical phases. Bounds of
these expectations for some cases (namely for the critical and
supercritical phases of random graphs) !

OUR WORK :
Quantification of the Minimum number of clauses to remove in
order to get satisfiable formula.
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MAX-CUT ∼ MAX-2-XORSAT (i)
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MAX-CUT ∼ MAX-2-XORSAT (ii)

MAX−2−XORSAT
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Graph
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Our results on MAX-2-XOR-SAT

(Daudé, Martinez, Rasendrahasina, R. 2012)
Precise results such as convergence in distribution to Poisson r.v
and then to Gaussian r.v. if the random graph is very sparse

“Only” bounds of the size of the MAX-CUT as soon as the giant
component of the random graph is born (truly disappointing !).

We have a conjecture about the size of the MAX-CUT in the latter
case (confirmed by colleagues empirical data).
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Conclusion and perspectives

The enumerative/analytic approaches and the random
2-XOR-SAT problem has lead to several directions.
Similar methods worked on other problems such as

1 bipartiteness (or 2-COL).

2 2-QXORSAT (quantified formula) and generalizations (cf. [Elie’s
talk].

3 planarity

but not completely on MAX-2-COL, MAX-CUT,
MIN-VERTEX-COVER, MIN-BISECTION, MAX-PLANAR
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