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Introduction

The inhomogeneous graphs model encodes several tractable SAT
and CSP problems
[Söderberg 02] [Bollobàs Janson Riordan 07]

bipartite graphs and satisfiable quantified 2-XOR-SAT formulas

Asymptotic analysis of the number of inhomogeneous graphs
(some differences with the original model)
following the approach of the giant paper [Janson Knuth Łuczak Pittel 93]

Phase transition of the modeled problems
probability for a graph to be bipartite [Pittel Yeum 10],
probability of satisfiability of a quantified 2-XOR-SAT formula [Creignou
Daudé Egly 07]
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Bipartite Graphs [Pittel Yeum 10]

Each vertex v receives a color c(v),

the edges are weighted according to the color of
their ends using R = (0 1

1 0),

weight 1
2 for each connected component.

weight(c(G)) :=
(

1

2

)cc(G) ∏
(a,b)∈E(G)

Rc(a),c(b)

∑
c

weight(c(G))=
{

1 if G is bipartite,

0 otherwise.

The number of (n,m)-bipartite graphs is

g(0 1
1 0), 1

2
(n,m) := ∑

(n,m)-graph G

∑
c

weight(c(G)).
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weight= 0

Each vertex v receives a color c(v),

the edges are weighted according to the color of
their ends using R = (0 1

1 0),

weight 1
2 for each connected component.

weight(c(G)) :=
(

1

2

)cc(G) ∏
(a,b)∈E(G)

Rc(a),c(b)

∑
c

weight(c(G))=
{

1 if G is bipartite,

0 otherwise.

The number of (n,m)-bipartite graphs is

g(0 1
1 0), 1

2
(n,m) := ∑

(n,m)-graph G

∑
c

weight(c(G)).
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Inhomogeneous Graphs [Söderberg 02] [Bollobàs Janson Riordan 07]

weight=σ2R1,1R3
1,2R2

1,3R2
2,3

R ∈Symq×q(R≥0) and σ> 0. A (R,σ)-graph is:

a vertex colored graph c(G),

with weight Rc(s),c(t) on each edge (s, t),

and weight σ for each connected component.

weight(c(G)) :=σcc(G)
∏

(a,b)∈E(G)

Rc(a),c(b),

gR,σ(n,m) := ∑
(n,m)-graph G

∑
c

weight(c(G)).
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Quantified 2-Xor-Sat Formulas [Creignou Daudé Egly 07]

∀x ,y , ∃a,b, . . . ,h, a⊕b = x , a⊕h = y , a⊕c = x ,

b⊕e = x , d ⊕ f = x , d ⊕g = y , e⊕h = y

satisfiable iff each cycle contains an even number of x and y .

00 10 01 11

00 x y

10 x y

01 y x

11 y x

, R =
(0 1 1 0

1 0 0 1
1 0 0 1
0 1 1 0

)
, σ= 1

4

The number of satisfiable quantified 2-Xor-Sat formulas
with n existantial variables and m clauses is gR,σ(n,m).
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Sub-Critical Density of Edges

When m
n < c(1−ε) and n →∞, with high probability

a (n,m)-(R,σ)-graph consists of trees and unicycle components.
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Sub-Critical Density of Edges

When m
n < c(1−ε) and n →∞, with high probability

a (n,m)-(R,σ)-graph consists of trees and unicycle components.

rooted tree Ti(z)= z exp(
←
R i

→
T (z))

→
T ∼→

t0 −
→
t1

√
1− z

ρ + . . .

unrooted tree U =←
1
→
T − 1

2

←
T R

→
T ∼ u0 +u2(1− z

ρ)+u3(1− z
ρ)

3/2

unicycle
component

V =−1
2 log(det(I −diag(

→
T )R))

Symbolic method

z∂
→
T = (I −diag(

→
T )R)−1→T
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unicycle
component

V =−1
2 log(det(I −diag(

→
T )R))

Drmota-Lalley-Wood Theorem
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Sub-Critical Density of Edges

When m
n < c(1−ε) and n →∞, with high probability
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component

V =−1
2 log(det(I −diag(

→
T )R))

Dissymmetry Theorem

z∂U = T1 + . . .+Tq
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Sub-Critical Density of Edges

When m
n < c(1−ε) and n →∞, with high probability

a (n,m)-(R,σ)-graph consists of trees and unicycle components.

rooted tree Ti(z)= z exp(
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R i
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√
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→
T ∼ u0 +u2(1− z

ρ)+u3(1− z
ρ)

3/2

unicycle
component

V =−1
2 log(det(I −diag(

→
T )R))

linear algebra
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Sub-Critical Density of Edges

When m
n < c(1−ε) and n →∞, with high probability

a (n,m)-(R,σ)-graph consists of trees and unicycle components.

rooted tree Ti(z)= z exp(
←
R i

→
T (z))

→
T ∼→

t0 −
→
t1

√
1− z

ρ + . . .

unrooted tree U =←
1
→
T − 1

2

←
T R

→
T ∼ u0 +u2(1− z

ρ)+u3(1− z
ρ)

3/2

unicycle
component

V =−1
2 log(det(I −diag(

→
T )R))

gR,σ(n,m)∼ n![zn]
(σU)n−m

(n−m)!
eσV

Large Power scheme [Flajolet Sedgewick 09]: one dominant saddle point.
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Critical Case

When m
n = c(1+µn−1/3) where µ=O(1), with high probability

a (n,m)-(R,σ)-graph consists of

trees and unicycle components,

a cubic multigraph where the vertices are replaced by rooted trees
and the edges by paths of trees.
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Critical Case

When m
n = c(1+µn−1/3) where µ=O(1), with high probability

a (n,m)-(R,σ)-graph consists of

trees and unicycle components,

a cubic multigraph where the vertices are replaced by rooted trees
and the edges by paths of trees.

In a cubic graph, each vertex owns 3/2 edges.
For the ordinary graphs, the gf of the developped cubic part is

GFcubic

(
z ← T (z)

(
1

1−T (z)

)3/2
)
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Critical Case

When m
n = c(1+µn−1/3) where µ=O(1), with high probability

a (n,m)-(R,σ)-graph consists of

trees and unicycle components,

a cubic multigraph where the vertices are replaced by rooted trees
and the edges by paths of trees.

gR,σ(n,m)∼ n![zn]
∑
k

(σU)k+n−m

(k +n−m)!
exp(σV )

e(σ)k (T1p3
1 +·· ·Tqp3

q)
2k

det(I −diag(
→
T )R)3k

Coallescence of two saddle points at the dominant singularity of
→
T (z)

[Janson Knuth Łuczak Pittel 93] or [Banderier Flajolet Schaeffer Soria 01].
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Results

New proof of the result of Pittel and Yeum on the probability of bipartiteness,
new result on the probability of satisfiability of quantified 2-Xor-Sat formulas:

2m

n
< 1−ε : P(sat)∼

(
1− 2m

n

)3/8(
1+ 2m

n

)1/8

√
1− m

n
,

2m

n
= 1+µn−1/3 : P(sat)∼ Φ1/4(µ)

(2n)1/8
.

Φσ(µ)=
p

2π
∑
k

e(σ)k

4k A(3k +σ/2,µ)

e(σ)k = [z2k ]

(∑
n

(6n)!z2n

(2n)!(3n)!2n(3!)n

)σ
A(y ,µ)= e−µ3/6

3(y+1)/3

∑
k

(32/3µ/2)k

k!Γ((y +1−2k)/3)
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Perspectives

More informations on the structure of inhomogeneous graphs in
the critical window,

applications to the analysis of algorithms,

generalisation to hypergraphs.
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