On the construction of bent vectorial functions. 3
C.Carlet and S. Mesnager. Int. J. Information and Coding Theory: Algebraic and Combinatorial Coding Theory, Volume 1, No. 2, pages 133-148, 2010.
A New Class of Bent and Hyper-Bent Boolean Functions in Polynomial Forms. 5
S. Mesnager. Journal Designs, Codes and Cryptography. Volume 59, No 1-3, pages 265-279 (2011).
Constructing new APN functions from known ones. 9
L. Budaghyan, C. Carlet and G. Leander. Finite Fields and Applications 15(2), pp. 150-159, 2009.
Further properties of several classes of Boolean functions with optimum algebraic immunity. 12
C. Carlet, X. Zeng, C. Li and L. Hu. Designs, Codes and Cryptography, Volume 52 , Issue 3, pp. 303-338, 2009.
Relating three nonlinearity parameters of vectorial functions and building APN functions from bent. 13
Designs, Codes and Cryptography. C. Carlet. Vol. 59, No. 1, Page 89--109, 2011.
The fraction of large random trees representing a given boolean function in implicational logic. 26 [Version pdf]
H. Fournier, D. Gardy, A. Genitrini and B. Gittenberger. Random Structures and Algorithms (RSA), to appear: 2011.
Bent and Hyper-bent Functions in polynomial form and Their Link With Some Exponential Sums and Dickson Polynomials. 32
S. Mesnager, IEEE Transactions on Information Theory.Vol 57, No 9, pages 5996-6009, 2011.
Equivalence classes of Boolean functions for first-order correlation. 33
J.-M. Le Bars, A. Viola. IEEE Transactions on Information Theory, pp.1247-1261, 2010.
Tautologies over implication with negative literals. 34
H. Fournier, D. Gardy, A. Genitrini, M. Zaionc. Mathematical Logic Quarterly, 56 (4), pp 388-396, 2010. .
Random 2-XORSAT phase transition. . 35
H. Daudé, V. Ravelomanana. Algorithmica, 59 (3), pages 48-65, 2011.
Context trees, variable length Markov chains and dynamical systems. . 36
B. Chauvin, P. Cénac, F. Paccaut, N. Pouyanne. Séminaire de Probabilités, Lecture Notes in Mathematics, Springer Verlag. A paraître.
Total path length of split trees. 37
N. Broutin, C. Holmgren. The Annals of Applied Probability. A paraitre.
The distribution of height and diameter in random non-plane binary trees. 38
N. Broutin, P. Flajolet. Random Structures and Algorithms. A paraitre.
Isomorphism and symmetries in random phylogenetic trees,. 39
M. Bona, P. Flajolet. J. Appl. Probab., 46 (4), pages 1005-1019, 2009. .
In the full propositional logic, 5/8 of classical tautologies are intuitionistically valid. 40
A. Genitrini and J. Kozik. In Journal: Annals of Pure and Applied Logic (APAL), to appear: 2011.
Self-dual bent functions. 46
C. Carlet, L. E. Danielsen, M. Parker and P. Solé. Special Issue of the International Journal of Information and Coding Theory (IJICoT) dedicated to Vera Pless, Volume 1, No. 4, pp. 384-399, 2010.
CCZ-equivalence of Bent Vectorial Functions and Related Constructions. 47
L. Budaghyan and C. Carlet. Designs, Codes and Cryptography, Vol. 59, No. 1-3 , pp. 69-87, 2011.
Comment on ``Constructions of Cryptographically Significant Boolean Functions Using Primitive Polynomials``. 48
C. Carlet. IEEE Transactions on Information Theory Vol. 57, no. 7, pp. 4852 - 4853 , 2011.
More Balanced Boolean Functions with Optimal Algebraic Immunity, and Good Nonlinearity and Resistance to Fast Algebraic Attacks. 49
X. Zeng, C. Carlet, L. Hu and J. Shan. IEEE Transactions on Information Theory, Vol. 57, pp. 6310-6320, 2011.
On Dillon's class $H$ of bent functions, Niho bent functions and o-polynomials. 50
C. Carlet and S. Mesnager. Journal of Combinatorial Theory Series A 118, pp. 2392-2410, 2011.
More vectorial Boolean functions with unbounded nonlinearity profile. 51
C. Carlet. Special Issue on Cryptography of International Journal of Foundations of Computer Science, to appear, 2011.
On Semi-bent Boolean Functions. 52
C. Carlet et S. Mesnager, IEEE Transactions on Information Theory, Vol 58, No 5, pages: 3287-3292, 2012.
Semi-bent functions from Dillon and Niho exponents, Kloosterman sums and Dickson polynomials. 53
S. Mesnager. IEEE Transactions on Information Theory. Vol 57, No 11, pages 7443-7458, 2011.
An efficient characterization of a family of hyper-bent functions with multiple trace terms. 65
J. P. Flori et S. Mesnager, Journal of Mathematical Cryptology. Vol 7 (1), pages 43-68, 2013.
Hyper-bent functions via Dillon-like exponents. 66
S. Mesnager et J. P. Flori, IEEE Transactions on Information Theory-IT. Vol. 59 No. 5, pages 3215- 3232, 2013.
Further results on Niho bent functions. 67
L. Budaghyan, C. Carlet, T. Helleseth, A. Kholosha et S. Mesnager, IEEE Transactions on Information Theory-IT. Vol 58, No 11, pages 6979-6985, 2012.
Limit distributions for large Polya urns. 70
Brigitte Chauvin, Nicolas Pouyanne and Reda Sahnoun. Annals of Applied Probability (2011), Vol. 21, No. 1, 1--32.
Support and density of the limit $m$-ary search trees distribution. 71
Brigitte Chauvin, Quansheng Liu and Nicolas Pouyanne. Discrete Mathematics and Theoretical Computer Science, AQ (2012), p. 191--200.
Context trees, variable length Markov chains and dynamical systems. 72
Brigitte Chauvin, Peggy Cenac, Frédéric Paccaut et Nicolas Pouyanne. XLIV, 1--40, (2012), Lecture Notes in Mathematics, Springer.
Uncommon suffix tries. 73
Brigitte Chauvin, Peggy Cenac, Frédéric Paccaut et Nicolas Pouyanne. Random Structures and Algorithms. A paraître.
Limit distributions for multitype branching processes of $m$-ary search trees. 74
Brigitte Chauvin, Quansheng Liu et Nicolas Pouyanne. Annales de l'Institut Henri Poincaré, à paraître (2013).
Persistent random walk assiociated with variable length Markov chains. 75
Brigitte Chauvin, Peggy Cenac, Samuel Hermann et Pierre Valois. Markov Processes and Related Fields, à paraître.
A new probability distribution for Boolean functions: the growing tree distribution. 76
Brigitte Chauvin, Danièle Gardy et Cécile Mailler. Random Structures and Algorithms, à paraître.
Smoothing equations for large Polya urns. 77
Brigitte Chauvin, Cécile Mailler et Nicolas Pouyanne. Journal of Theoretical Probability, (2013).