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Abstract

The Shannon effect states that “almost all” Boolean functions have a complexity close

to the maximal possible for the uniform probability distribution. In this paper we use some

probability distributions on functions, induced by random expressions, and prove that this

model does not exhibit the Shannon effect.
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1 Introduction

A Boolean function in k variables is a function f : {0, 1}k → {0, 1} where 0 and 1 may be
interpreted as the truth values false or true. Each such function can be represented by a Boolean
expression built of the k variables and connectives taken from the set {∧,∨,→}. The complexity
of a Boolean function f is the minimal number of variables needed to build a Boolean expression
which represents f . Roughly speaking, the Shannon effect is the following phenomenon: If we
choose uniformly at random a Boolean function in k variables, then asymptotically almost surely
(as k tends to infinity) the function will have a complexity which is exponential in k. The most
complex functions in k variables also have exponential complexity. So a random function has, in
some sense, almost maximal complexity.

Now, instead of drawing a random function we turn to its representation. Fix a set of con-
nectives, for instance a subset of {∧,∨,→}, and an integer k. Then write at random a Boolean
expression in k variables using the connectives of the specified set. What is the “typical” function
you get? What is its complexity? Do we observe the Shannon effect here, i.e., is the complexity of
the “typical” function almost the largest possible? What is the mean complexity of the Boolean
functions? Note that the distribution obtained in that way is different from the previous one. If,
e.g., the chosen set of connectives is a proper subset of {∧,∨,→}, then the system is incomplete,
i.e., there are functions which do not have a representation and therefore their probability is zero.

The efforts to define non-uniform probability distributions (induced by random Boolean ex-
pressions, or formulae) on the set of Boolean functions, date back to the mid nineties. The starting
point is generally the description of expressions as trees of a suitable shape and suitably labelled.
The first investigations in this direction were carried out by Paris et al. [13] on And/Or trees,
i.e., expressions built on the two connectives ∧ and ∨; the underlying model was that of binary
Catalan trees. The study of these trees was further pursued by Lefmann and Savický [10] who
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proved by a pruning argument the existence of a probability distribution induced by random ex-
pressions. Moreover, they established important lower and upper bounds for the probability of
any Boolean function in terms of its complexity. At the same time, Woods [17] proved indepen-
dently the existence of a limiting distribution for general formulae. The term limiting probability
in this context has to be understood as follows: Consider the ratio of the number of formulae of
size n that compute a fixed Boolean function f among all formulae of size n and let the size grow
to infinity. It is possible to show that the limit of this ratio exists for a wide variety of logical
systems (see Gardy’s survey [7]), and that we can thus define a probability distribution on the set
of Boolean functions.

The survey paper of Gardy [7] presents an overview of the probability distributions induced
by random Boolean expressions on Boolean functions and of the way we can obtain them us-
ing the tools of analytic combinatorics: enumeration of formulae/trees by generating functions,
the Drmota-Lalley-Woods theorem (see [5, p. 482]) for solving an algebraic system of algebraic
quadratic equations and asymptotics. Chauvin et al. [3] consider And/Or trees, too. They im-
proved the bounds established by Lefmann and Savický and then introduce a second construction
of a probability distribution on functions, whose underlying expressions are built by a critical
Galton-Watson branching process. More recently, Kozik [8] proved the order of convergence of the
probability of a fixed function, when the number of variables tends to infinity, for both probability
distributions. Fournier et al. [6] examined the problem in the logical system of implication and
established a relationship between the complexity and the probability of a fixed function.

By considering the uniform distribution on Boolean functions, the Shannon effect states that
asymptotically almost all Boolean functions have a tree complexity with an order of magnitude
2k/ log k which is close to the maximal possible complexity that is of order Θ(2k). This classical
result was discovered in [14, 15]. Further investigations were carried out by Lupanov [11, 12];
a proof based on combinatorial counting arguments can be found in Flajolet and Sedgewick’s
book [5].

The main goal of this paper is to disprove the existence of the Shannon effect in probability
distribution on functions induced by random expressions. We will examine two probability distri-
butions: For the first one, we will focus on the logical system with one connective (implication).
In order to show our result we will prove that a certain class of functions with small complexity
has a positive limiting probability. The second is based on Galton-Watson branching processes.
We consider here logical systems with an arbitrary set of connectives and are able to characterize
the set of functions which attains the total mass in the limiting distribution.

The present paper is organized as follows. In Section 2 we describe the model and state the
main result, namely that a subfamily of functions whose complexity is at most quadratic has a
strictly positive probability when the number of variables tends to infinity in large implicational
trees. The next section develops the tool of expanding trees in a suitable way which will be one
of the main ingredients of the proof. Section 5 is dedicated to a second probability distribution,
based on decorated Galton-Watson trees. Finally, we present possible perspectives in Section 6.

2 Model and main result

First we start with a rapid description of the expressions under consideration, then we detail the
way they induce a probability distribution on Boolean functions. We will state our main result,
saying that there is no Shannon effect in the probability distribution on Boolean functions induced
by large implication trees. Then we will define the crucial tool of expansions of trees and finally,
we will prove the main result by computing some limiting ratios.

For the first distribution, we consider expressions built with the single connective of implication
(denoted by →) and k positive literals {x1, . . . , xk}, i.e., there is no negation of variables. These
expressions can be represented as complete binary and planar trees whose internal nodes are
labelled by the single connective and the leaves by some literals. The set of expressions of this
logical system is denoted by Ek. Each expression, or tree, is associated to a specific Boolean
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function. For any expression, we will say that this expression computes or represents the associated
function. The subset of functions that are represented by some expressions of Ek will be denoted
by Bk. The logical system of implication with positive literals is not complete, so Bk is a subset
of all Boolean functions in k variables.

We define the size of any expression of Ek as the number of leaves of its tree representation.
Let f ∈ Bk. The complexity of f is the size of the smallest trees computing it. If f actually
depends on the variable x, then we say that x is an essential variable for f . Otherwise x is called
an inessential variable for the function f .

Let Cn be the number of complete binary unlabelled trees with n leaves, i.e., Cn = 1
n

(

2n−2
n−1

)

,
the (n − 1)-th Catalan number. The generating function that enumerates full binary unlabelled
trees, where z marks the leaves, is denoted by F (z) and satisfies:

F (z) =
1−

√
1− 4z

2
.

Fact 1 The Catalan numbers satisfy Cn+1 6
4n√
πn3/2 for all n ∈ N and Cn+1 ∼ 4n√

πn3/2 , as n → ∞.

Catalan numbers are well presented in the book of Flajolet and Sedgewick [5, p. 6-7].

We define the limiting ratio of a subset of expressions A ⊂ Ek as

µk(A) = lim
n→∞

#{A ∈ A : |A| = n}
#{A ∈ Ek : |A| = n} , if this limit exists.

For a Boolean function f , we define µk(f) = µk({A ∈ Ek : [A]] = f}), where [A]] is the Boolean
function represented by the expression A. The results of Drmota [4], Lalley [9] and Woods [17]
give us an easy way to prove that the limiting ratio of each Boolean function is defined in the
system Ek (i.e., for all Boolean functions f the limit defining µk(f) exists). These theorems are
nicely described in Flajolet and Sedgewick [5].

In the following, we will denote the generating function enumerating all trees in this logical
system Fk(z). The variable z marks the leaves, so

Fk(z) =
1−

√
1− 4kz

2
.

Let us state the main theorem of this section.

Theorem 2 Let R = 9πk2/16. Then the probability of all functions of complexity at most R is
larger than or equal to 9/64, when the number of variables k tends to infinity. Therefore there is
no Shannon effect in the logical system built only on implication.

This theorem proves that a family of functions with small complexity (polynomial in k) has
a non-negligible probability. So, the probability distribution induced by implication trees cannot
exhibit the Shannon effect.

Corollary 3 In the logical system of implication {→} and literals {x1, x̄1, . . . , xk, x̄k} (this sys-
tem is complete, i.e., all functions are expressible), the probability distribution cannot exhibit the
Shannon effect.

To prove the corollary, we use Theorem 2, with 2k positive literals instead of k. Then for all
i ∈ {1, . . . , k} we identify xk+i to x̄i.
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3 Expansions in implication trees

The goal of this part consists in defining some family of large trees obtained using a smaller
tree. One of the property of these trees is that they compute the same function as the smaller
one, and consequently, these trees do not represent functions with larger complexity. Therefore
we will introduce the concept of (ν,A)-expansions of trees (see below). Certain subclasses of
(ν,A)-expansions were used in [6] for studying the relation between probability and complexity of
functions in the implicational system.

Any tree in our logical system can be viewed as a finite sequence of the form (A1, . . . , Aℓ, λ)
with binary trees Ai and a leaf λ. The decomposition is as follows. Start at the root and go to
the right-most leaf of the tree. The subtrees sticking out to the left of this path are the trees Ai.
Since each node corresponds to an implication a → b and this implication is equivalent to ā ∨ b,
the function computed by the whole tree is just the disjunction of the negations of the functions
computed by the subtrees Ai and the label of the leaf λ. In such a decomposition we call λ the
goal and A1, . . . , Aℓ the premises of the tree. Recursively, we define the premises and the goal of
any subtree T ′ of T (the goal of T ′ is its rightmost leaf and its premises are the left subtrees of T ′

we meet by following its right branch).
For any tree T and any leaf λ of T , we define ∆λ to be the minimal left subtree of T whose

goal is λ (if λ is the goal of T , we define ∆λ = T ). For the rest of the paper we will abusively use
∆x instead of ∆λ, where x is the label of λ.

Definition 4 Let T and A be two trees and ν an arbitrary node of T . A (ν,A)-expansion of T
is defined to be the tree obtained by replacing the subtree B of T which is rooted at ν by the tree
A → B.

The general scheme of a (ν,A)-expansion is depicted in Figure 1. As the tree B is replaced
by A → B, in the right tree the connective → is in the place where the root of B was before the
expansion.

As a concrete example of the above definition consider the tree T of the expression x → (y → z).
Let ν1 the (internal) node corresponding to the second implication and ν2 the node corresponding
to the literal y. Furthermore, let A be an arbitrary tree. Then the (ν1, A)-expansion of T is
x → (A → (y → z)) and the (ν2, A)-expansion of T is x → ((A → y) → z) (see Figure 2).

ν

B

ν

BA

Figure 1: The right tree is the (ν,A)-expansion of the left one.

Lemma 5 Let T be a tree and x one of the labels of its leaves. Furthermore, let A be a tree
with a premise of size one, labelled by x. Then for every (internal or external) node η of ∆x the
(η,A)-expansion of T computes the same Boolean function as T .

Such an expansion will be called an expansion of type “premise x”.
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→

x →

y z

ν1

ν2

→

x →

A →

y z

→

x →

→

A y

z

Figure 2: The left tree is T , the other trees are the (ν1, A)-expansion and (ν2, A)-expansion of T .

Proof: Let T be a tree and x the label of one of its leaves. Furthermore, let A be a tree with
a premise of size one and labelled by x. Denote by η one of the nodes of ∆x and B the subtree
rooted in η. Set ∆′

x equal to the (η,A)-expansion of ∆x.
If x is set equal to 1, then ∆′

x computes 1, and so does the tree ∆x. Otherwise, if x = 0,
then the tree A, which contains a premise labelled with x computes 1. Consequently, the tree
A → B computes the same function as B and thus ∆′

x and ∆x compute the same function. This
completes the proof.

Let x be a fixed variable and let us determine Eprem. x
k (r) the number of expansions of type

“premise x” of all labelled trees of size r.

Lemma 6 Let ρ = (k − 1)/(2k − 1)2.

Eprem. x
k (r) = ρ−r ·

(

1

2(2k − 1)
− 1

2k(k − 1)

r−1
∑

ℓ=0

(kρ)ℓ+1

(

2ℓ

ℓ

)

)

.

Proof: Let T (y, z) and U(y, z) be two generating functions. Both enumerate trees with the
variable z marking leaves. For the generating function T , the variable y marks every node which
belongs to a ∆x. For U , y is marking nodes such that these nodes belong to at least two distinct
(and therefore nested) ∆x. In fact, by differentiating T (y, z) with respect to y, and then by
evaluating y to 1, we get a generating function in the variable z whose coefficient of zr is the
number of expansions (counted with multiplicities) of type “premise x” in all trees of size r.

But we are interested in the number of possible expansions of type “premise x” in all trees of
size r (counted without multiplicities). This is given by the following value:

Eprem. x
k (r) = [zr]

(

∂T

∂y
(y, z)|y=1 −

∂U

∂y
(y, z)|y=1

)

.

To simplify the following equations, we will denote by Ty(z) the function ∂T
∂y (y, z)|y=1. The same

kind of notations Tz(y) and Uy(z) will be used. Thus Eprem. x
k (r) = Ty(z)− Uy(z).

We first establish a functional equation for T (by decomposing it according to its right branch):

T (y, z) =
(k − 1)z

1− T (y, z)
+

yz

1− T (y, y2z)
.

Both terms are respectively obtained when the goal is different from x, resp. is equal to x. In
the second term, in each subtree obtained by T (y, y2z), expansions are possible in every node and
moreover an expansion is possible in the node which is the father of this subtree. Consequently,
if the subtree has size s, then exactly 2s expansions are possible relatively to this subtree. After
differentiation and evaluation at y = 1 we obtain:

Ty(z) =
z(1− Fk(z) + 2zF ′

k(z))

(1− Fk(z))2

=
z√

1− 4kz
+

4kz2

(1− 4kz)(1 +
√
1− 4kz)

.
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In the same way we get:

U(y, z) =
(k − 1)z

1− U(y, z)
+

z

1− T (y, z)
.

The variable y marks the nodes that belong to two distinct ∆x. In fact, if the goal of the whole
tree is distinct from x, then we recursively enumerate the premises. Otherwise, if the goal of the
tree is x, then we want to enumerate nodes that belong to a second ∆x in each premise.

Uy(z) =
zTy(z)

(1− Fk(z))2 − (k − 1)z
.

So finally,

Ty(z)− Uy(z) =
(1− 2k)z

2((2k − 1)2z − k + 1)
+

z

2((2k − 1)2z − k + 1)
√
1− 4kz

.

The constant ρ = (1 − (2k − 1)−2)/(4k) is the smallest singularity of the function Ty(z)− Uy(z).
To obtain the coefficient of zr in the previous generating function, we use the Cauchy product of
both generating functions g(z) = 1/((2k − 1)2z − k + 1) and h(z) = 1/

√
1− 4kz. Let r be an

integer, then

[zr]g(z) =
ρ−r

1− k
zr and [zr]h(z) = (r + 1)krCr+1z

r,

where Cr+1 is the rth Catalan number. Computing the Cauchy product g(z)h(z) we get

[zr−1]g(z)h(z) =
−ρ−r

k(k − 1)

r−1
∑

ℓ=0

(kρ)ℓ+1

(

2ℓ

ℓ

)

.

Thus we conclude

Eprem. x
k (r) = ρ−r ·

(

1

2(2k − 1)
− 1

2k(k − 1)

r−1
∑

ℓ=0

(kρ)ℓ+1

(

2ℓ

ℓ

)

)

.

For any tree T and any node ν of T , we define ∆2
ν to be the minimal left subtree of T which

strictly contains ∆ν , if it exists. As before we will abusively use ∆2
x instead of ∆2

ν , where x is the
label of ν, for the rest of the paper.

∆ν

ν

∆2

ν

Figure 3: The left subtrees ∆ν and ∆2
ν associated to a node ν of a tree.

Lemma 7 Let T be a tree and ν one of its left leaves (a leaf which is a left son) labelled with x.
Moreover, let A be a tree whose goal is labelled by x. Then for every (internal or external) node
η of ∆2

ν which is distinct from ν, the (η,A)-expansion of T computes the same Boolean function
as T .
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Such an expansion will be called an expansion of type “goal x”.

Proof: Let T be a tree and ν one of its left leaves labelled with x. As ν is a left son, the existence
of ∆2

ν is obvious. Let A be a tree whose goal is labelled by x. Let η be one of the node of ∆2
ν ,

distinct from ν, and B be the tree rooted in η. If x is set equal to 1, then the expanded tree
∆2′

ν (the (η,A)-expansion of ∆2
ν) computes the same function as the tree ∆2

ν since A computes 1.
Otherwise, if x = 0, then ∆2

ν computes 1 and consequently the tree ∆2′

ν computes 1, too. This
completes the proof.

Let x be a fixed variable and let us determine Egoal x
k (r) the number of expansions of type

“goal x” of all labelled trees of size r.

Lemma 8 For all r ∈ N we have

Egoal x
k (r) > Eprem. x

k (r) − rkr−1Cr.

Proof: We want to establish a lower bound of the number of expansions of type “goal x” of trees
of size r. Let T be a tree with a leaf ν labelled by x. Using Lemma 7 we know that we can expand
the tree by an expansion of type “goal x” in every node of ∆2

ν \ {ν} if ν is a left leaf.
First suppose that ν is a left node. If we consider the mirror image T ′ of T (it is obtained by

exchanging the left and the right sons of T and then going on recursively, i.e., apply the whole
procedure to the sons). We denote by ν′ the image of ν in T ′. The number of nodes of ∆2

ν in T
is larger than – or possibly equal to (in the case where ν is the first premise of ∆2

ν) – the number
of nodes of ∆′

ν in T ′. Consequently,

#{(ν,A)-expansions of type “goal x” in T} > #{(ν′, A)-expansions of type “premise x” in T ′}−1

Suppose now that ν is a right node. We cannot expand with type “goal x”. But if we consider
its mirror image, the size of ∆′

ν in T ′ is 1, so the previous inequality is still valid in this case.
The mapping that changes a tree into its mirror image is bijective so the total number of

expansions of type “goal x” in trees of size r is larger than or equal to the difference of the total
number of expansions of type “premise x” in trees of size r and the number of nodes labelled by x
in trees of size r (let us denote this number by N(r)).

N(r) = Cr

r
∑

ℓ=1

(

r

ℓ

)

(k − 1)r−ℓ

6 rkr−1Cr .

This completes the proof.

4 Lower bounds and proof of Theorem 2

Lemma 9 Let R = 9π
16 k

2. For all r < R we have

Eprem. x
k (r) >

(

1

2(2k − 1)
− 1

8k(k − 1)
−

√
r

4
√
πk(k − 1)

)

(4k)r.

Proof: Let R = 9π
16 k

2 and r < R. Using Fact 1 and the fact that kρ < 1/4, we get

r−1
∑

ℓ=0

(kρ)ℓ+1

(

2ℓ

ℓ

)

6
1

4
+

r−1
∑

ℓ=1

ℓ+ 1

4
√
π ℓ3/2

The function (x+ 1) · x−3/2 is decreasing, so

r−1
∑

ℓ=0

(kρ)ℓ+1

(

2ℓ

ℓ

)

6
1

4
+

1

4
√
π

∫ r

1

x+ 1

x3/2
dx 6

1

4
+

√
r

2
√
π
.

Consequently, the lemma is proved.
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Lemma 10 Let R = 9π
16 k

2. For all r < R we have

Egoal x
k (r) >

(

1

2(2k − 1)
− 1

8k(k − 1)
−

√
r

4
√
πk(k − 1)

− 1

4
√
πrk

)

(4k)r.

Proof: Using Fact 1,

rkr−1Cr 6
(4k)r−1

√
πr

.

Now, using Lemmas 8 and 9, we get the result.

We are now ready to prove Theorem 2.

Proof of Theorem 2: Let R = 9πk2/16 and BR
k be the set of Boolean functions on k variables

whose complexity is less than R. For a tree T of size r < R, let Ex
T be the family of trees obtained

by one expansion of type “premise x” such that the left subtree A grafted to T satisfies the
following conditions: the structure of A is x → (T1 → T2) or T1 → (x → T2) and both sizes of
T1 and T2 are larger than R. Trees of Ex

T are computing the same function as T , because they
belong to expansions of type “premise x” of T . For a tree T of size r < R, let Fx

T be the family
of trees obtained by one expansion of type “goal x” such that the left subtree A grafted to T
satisfies the following conditions: the structure of A is T1 → T2 such that both sizes of T1 and T2

are larger than R, the first premise of T2 has size at least 2 and the goal of T2 is x. Trees of Fx
T

are computing the same function as T , because they belong to expansions of type “goal x” of T .
We remark that both families Ex

T and Fx
T are disjoint.

Then,

µk(BR
k ) >

⌊R⌋
∑

r=1

∑

all variables x

∑

T∈Tk,|T |=r

µk(Ex
T ) + µk(Fx

T ),

where ⌊R⌋ denotes the integer part of R.
Let X(z) be the generating functions of trees with structure x → (T1 → T2) or T1 → (x → T2)

and such that both subtrees’ sizes are larger than R. Then we get X(z) = 2zP (z)2, where
P (z) =

∑∞
n=⌊R⌋ k

nCnz
n. Let xn be the coefficient of zn in X , we have

xn = 2

n−1−⌊R⌋
∑

l=⌊R⌋+1

kn−1ClCn−1−l.

Let ǫ > 0, then by using Fact 1 there exist sufficiently large k and n such that

xn >



2

n−1−⌊R⌋
∑

l=⌊R⌋+1

(4k)n−1

16π(l− 1)3/2(n− 2− l)3/2



− ǫ.

The function x → x−3/2(n− 3− x)−3/2 is decreasing, so

xn > 2
(4k)n−1

16π

∫ n−1−⌊R⌋

⌊R⌋
x−3/2(n− 3− x)−3/2dx.

Consequently, for a tree T of size r,

µk(Ex
T ) = lim

n→∞
xn−r

knCn
>

2
√

π⌊R⌋(4k)r+1
.

In the same way we prove

µk(Fx
T ) >

4
√

π⌊R⌋(4k)r+1
.
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If we set

M1
k =

⌊R⌋
∑

r=1

∑

all variables x

Eprem. x
k (r)

2
√

π⌊R⌋(4k)r+1

and

M2
k =

⌊R⌋
∑

r=1

∑

all variables x

Egoal x
k (r)

1
√

π⌊R⌋(4k)r+1
,

then µk(BR
k ) > M1

k +M2
k . Moreover, note that Eprem. x

k (r) does not depend on the variable x,

M1
k >

⌊R⌋
∑

r=1

(

1

2(2k − 1)
− 1

8k(k − 1)
−

√
r

4
√
πk(k − 1)

)

1

2
√

π⌊R⌋

>

(

1

2(2k − 1)
− 1

8k(k − 1)

)

√

⌊R⌋
2
√
π

− 1

8π
√

⌊R⌋k(k − 1)

∫ ⌊R⌋+1

1

√
xdx

lim
k→∞

M1
k >

3

64
.

In the same way we compute a lower bound for M2
k . By taking the limit for k tending to infinity,

we finally obtain

lim
k→∞

µk(BR
k ) >

9

64
.

5 Decorated Galton-Watson trees

We shall consider the probability distribution on Boolean functions induced by a distribution on
trees given by a critical Galton-Watson process, where the internal nodes are labelled uniformly at
random and independently and the labels are taken from a set C containing c binary connectives.
The external nodes are labelled uniformly at random and independently with labels taken from
the set {x1, . . . , xk}. We shall call such trees decorated Galton-Watson trees.

In this model, the probabilities that a node has zero or two sons are equal to 1/2. We consider
the size of a tree to be its number of leaves. It is known that a tree is almost surely finite in this
model (see book [1] to get such results). We denote the set of all expressions built with the set of
connectives C and the k variables by Ek.

This probability distribution has been introduced by Chauvin et al. in [3] on And/Or trees and
can be obviously adapted to our case – here for labelling the internal nodes we choose (uniformly
at random) among c different connectives instead of two. So for an expression A ∈ Ek, we get:

πk(A) = P(structure of A) · P(labelling of A) =
1

22|A|−1 c|A|−1 k|A| ,

where |A| denotes the size of A. Notice that the probability πk(A) is well defined for any subset
of trees A ⊂ Ek. We define the probability of a given Boolean function f , on k variables, as

πk(f) = πk({A ∈ Ek | [[A]] = f}) =
∑

[[A]]=f

πk(A),

where [[A]] is the Boolean function represented by the expression A.

Let us denote by Bk the subset of functions that are represented by some expressions of Ek (we
recall that Bk is dependent on C).

As in the model of the previous sections we say that if A is an expression representing f ∈ Bk,
then A computes the function f . The complexity of f is the size of the smallest trees computing
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it. If f depends on the variable x, then x is called an essential variable else an inessential variable
for f .

A Boolean function f ∈ Bk is called a read-once function if its complexity is equal to the
number of essential variables it depends on. The minimal trees of a given function are the trees
computing the function whose size equals the complexity of the function. A read-once tree is a
tree whose leaves are all labelled with distinct variables. Notice that read-once trees are exactly
minimal trees computing read-once functions. We will denote by RTk the set of read-once trees
and by Rk the set of all read-once functions of Bk.

Theorem 11 The probability of all read-once functions tends to 1 almost surely, when the number
k of variables tends to infinity, i.e.,

lim
k→∞

πk(Rk) = 1.

Let us give another interpretation of this theorem. When k tends to infinity and you choose a
function at random according to the probability distribution induced by decorated Galton-Watson
trees, then this function is read-once, almost surely. Obviously, there is no Shannon effect in this
model since the complexity of read-once functions is at most k. We prove last Theorem now.

Fact 12 Dominated convergence theorem:
Suppose that (fn)n∈N is a sequence of measurable functions, such that fn tends pointwise to a
function f almost everywhere as n tends to infinity. If |fn| 6 g for all n, where g is integrable,
then f is integrable and

lim
n→∞

∫

fndµ =

∫

fdµ.

Proof of Theorem 11: To obtain a lower bound of the probability of all read-once functions,
when the number k of variables, we compute the following limit: limk→∞ πk(RTk). Let us denote
Rγ

k the set of read-once functions of complexity γ, and RT γ
k the corresponding set of minimal

trees. Thus we obtain

lim
k→∞

πk(RTk) = lim
k→∞

k
∑

γ=1

πk(RT γ
k ).

Obviously πk(Rγ
k) > πk(RT γ

k ). Let us compute the following probability:

πk(RT γ
k ) =

∑

A read-once tree

|A| = γ

πk(A)

=
∑

A read-once tree

|A| = γ

1

22γ−1 cγ−1 kγ

=
1

22γ−1 cγ−1 kγ
Cγ · cγ−1 · k(k − 1) · · · (k − γ + 1),

where Cγ denotes the (γ − 1)th Catalan number.
So finally

πk(RT γ
k ) =

2

4γ
k(k − 1) · · · (k − γ + 1)

kγ
Cγ .

Let γ ∈ N \ {0}, we define g(γ) = 2
4γ Cγ . Using Fact 1, we conclude that g is integrable. The

functions (πk) are probability distributions so they are measurable and moreover for all k and γ
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we have 0 6 πk(RT γ
k ) 6 g(γ). Clearly, πk(RT γ

k ) = 0 for all γ > k. Using Fact 12, we obtain

lim
k→∞

k
∑

γ=1

πk(RT γ
k ) =

∞
∑

γ=1

2

4γ
Cγ .

Using the generating function enumerating Cγ , we get limk→∞
∑k

γ=1 πk(RT γ
k ) = 1.

Finally, since the probability of read-once trees is a lower bound of the probability of the
read-once functions, we conclude:

lim
k→∞

πk(Rk) = 1.

6 Conclusion and perspectives

In the model based on branching processes the situation is very clear. If you take a random
function, then, roughly speaking, its complexity is linear in the number of its variables. In the
model based on large Catalan trees we could show that there is a positive fraction of functions
with low complexity. Thus a natural question arises: Can we hope that asymptotically almost
every function has low (i.e., polynomial) complexity. If so, what is the exponent of the maximal
complexity which (speaking in terms of asymptotics) actually shows up? If not, is it possible to
identify a class of functions which has asymptotically the total mass and which is at least easy to
describe?

Another direction is of course the transfer of the result from the implicational system to other
logical systems. Even in the case of And/Or trees the situation is already different. If we try a
similar approach then it turns out that the class of functions has limiting ratio zero. However, we
conjecture that the model of And/Or trees does not exhibit the Shannon effect. We are currently
working on a generalization of the concept of expansions in And/Or trees and hope to get a strictly
positive limiting ratio for functions of quadratic complexity.
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